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ABSTRACT CCS CONCEPTS

Connectomics alterations associated with subtle forms of U Applied computing &® Life and
cerebrovascular neuropatholo@such as cerebral microbleeds Computational biologyBiological networks, Imaging

(CMBsPcan result in substantial neurological and/or cognitive

deficits in victims of traumatic brain injury (TBI). Quantifying KEYWORDS

CMB-related connectomehanges in mild TBI (mTBI) patients Neuroinformatics data sciencgbrain connectomgmagnetic

requires ingenious neuroinformatics to integrate structural | ooonance imaging

magnetic resonance imaging (sMRI) with diffusiarighted

imaging (DWI) for patiendtailored profiling while preserving the ACM Reference format:

d at. a scientl S_t us poplllbtlloﬂ studigs. Suain IA.mlﬂahe?, r‘Reli]ostowsky, N Chowdhury, and A Irimia. 2018.
solutions, however, can assist the refinement of rehabilitation - Neyroinformatics and analysis of connectomic alterations thieerebral
protocols and streamline largscale analysis  while microhemorrhages in geriatric mild neurotrauma. Rroceedings of 9th
accommodating the heterogeneity of mTBI. This study describes ACM Conference on Bioinformatics, Computational Biology, and Health
a pipeline for the multimodal integration of SMRIX®I/DTI to Informatics(ACMBCB E18) . ACM, &pages. Yor k, NY,

quantify white matter (WM) neural network circuitry alterations

associated with mTBtelated CMBs. The approach incorporates

WM streamline matching, topologgompliant streamline 1 INTRODUCTION

prototyping and alongtract analysis within a unified framework.  The neuroinformatic analysi®f structural magnetic resonance,
When applied to the analysis of neuroimaging data acquired diffusion-weighted and diffusion tensor imaging (sMRI, DWI and
from both mTBI and healthy control volunteers, the approach DTI, respectively) acquired from traumatic brain injury (TBI)

facilitates the identification of patienspecific CMBrelated
connectomic changes while incorporating the ability to perform
group analyss. This pipeline for the identification and profiling

of connectopathies can assist the adaptation of clinical
rehabilitation protocols to
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patients can help neuroscientists to understand how brain
network changes can lead to measuraleurological deficits

[1]. Despite the potential of personalized neuroimaging analysis
for neurotrauma patients, the range of algorithmic approaches

p &dr quantfying thjury- retitedvaitedationd to white amdtter. (WM)

networks remains limited and there are few informatics
solutions for streamlining subjedevel analyses [2].
Nevertheless, the abilitjo examine brain networks on a patient
by-patient basis when quantifying network degradation after
lesion onset remains desirable not only in mild TBI (mTBI) but
also in multiple sclerosis (MS), stroke, and brain cancer.
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Fig. 1. Flowchart of neuroimage analysis for SWI/DW!I volumes (see text for details).



Understanding how neural injuriesan affect brain networks of view (FOV) = 256 mm x 256 mm; matrix size = 256 x 256; slice
remains an important task due to the association between thickness = 1 mm]. Fweighted volumes were acquired using a
connectopathies and the degradation of neurocognitive function. 3D sequence @ = 2,500 ms; §= 360 ms; flip angle = 120
By designing novel neuroinformatics workflows for the patient  degrees; ETL = 180; FOV = 256 mi268 mm; matrix size = 256

tailored longitudinal analysis of brain networkghe refinement x 256; slice thickness = 1 mm). Fleempensated GRE/SWI
of rehabilitation protocols for these victims of neurovascular volumes were acquired axially g= 30 ms; E = 20 ms; FOV =
pathology can be facilitated. 256 mm x 192 mm; matrix size = 512 x 256; slice thickness = 2

This study demonstrates a novel approach to the patient mm). DWI volumes were acquired axially in 64 greof
tailored assessment of injusgelated longitudinal changes in the  directions (g = 8,300 ms; = 72 ms; flip angle = 90 degrees;
macroscale  connectome. u® analysis of DWI/DTI FOV = 256 mm x 256 mm; acquisition matrix size = 128 x 128;
measurements from healthy control (HC) older adults and from slice thickness = 2 mm). Two DWI volumes with b = 0 s/im
age and sexmatched mTBI victims with MRdetectable and b = 1,000 s/m?ﬂwhere b is the diffusiorweighting constant
cerebral microbleeds (CMBs) demonstrates the ability to situate of DWI) were also procured. mTBI volunteers were imaged
individual patients relative to a usedefined controlpopulation. acutely (~2 days after injury) and chronically (~6 months post
Importantly, the approach preserves and enhances the injury). HC volunteers were scanned twice, within a shonth
neuroinformatici andas -lesebstubiéestny ftinervaundert ake group
this highly heterogeneous clinical population and our pipeline
has potential applications ranging from the quantification of 2.3 DTI streamline matching

local connectivity changes in perilesional areas to the detection 14 quantify within-subject neural network circuitry differences

of global reorganization of brain networks. across time, an algorithm for matching DTI tractography
streamlines across time points was integrated within the analysis

2 MATERIALS AND METHODS pipeline.Based on the algorithm developed by Leemen etathe

A flowchart which summarizeshe data processing and analysis ~ Streamline was modeled as a piecewtiferentiable 3D space

steps is showiin Fig. 1. curve with curvature k and torsion t, both of which are
rotationally- and translationallyinvariant topological properties

2.1 Participants and recruitmen t of the curves corresponding to DTI tractography bund[ds By

This study was implemented in conformity with US federal law ~Ccakulating k and t, corresponding space curves were labeled,
(45 C.F.R. 46) and was approved by the Institutional Review local transformations of curve pairs were calculated, and a global
Board (IRB) at the University of Southern California (USC). All transformation was computeb]. Arc-length parametrizations,
materials and methods follow the relevant directives and With point correspondences across time, were generated for each
guidelines eforced by the USC IRB. mTBélated CMBs are perilesional streamline bundle and within each subject. A curve
often observed in older brain trauma victims [1], and all index correspondence was established for every such space
participants in this study were aged 65 or older at the time of Curve, across each time point and within each subject. A local
enrollment. Exclusion criteria included (1) a history of trar?sforr.natlon was gomputed to |mp'lement pmm-pqlnt co
neurological or psychiatric dmase and (2) the presence of 'egistrationuti i zi ng Schonemannis sol
structural neuropathology (aside from CMBs) on MRI scans. Two Procrustes problenjS]. By minimizing the global residues of
groups (26 mTBI patients and 26 HC volunteers) were included, squared intercurve distances, a global transformation mapping
with a 1:1 sex ratio in each group. The Glasgow Coma Scale SOUrCe curves to target curves was then estimated from local
(GCS) scores of mTBI patients were availapteean p = 13.7,  Curve transformations.

standard deviation ¢ = 0.4). %Velchl]s E .test was i mpl emente
determine whether there were significant differences in age or -4 Lesion analysis
GCS score between mTBI patients and HC volunteers. Lesions were identified both by a human expert with training in
neuroradiology/neuropathology and by an automated algorithm
2.2 Neuroimaging which was integrated within the processing pipelindlhe
The same MRI scanner type (Prisma MAGNETOfib TIM, 26 automated algorithm used a voxel classifier utilizing he
channel head coil, 3 T magnetic field strength, Siemens Corp., Microbleed Anatomic Rating Scale [6] to label potential CMB
Erlangen, Germany) was used to acquire gradiecho (GE) image featuresldentification was performed based on GRE/SWI
DWI as well as anatomic MRI volumes jfTand Tr-weighted scans, where hypointensities are indicative of CMB presence.
MRI, gradientrecalled echo (GRE)/susceptibility weighted Accounting for CMB shape by creating a separate pipeline
imaging (SWI)]. To acquire Fweighted MRI, a three module allowel lesions which had been erroneously identified as

dimensional (3D), magnetizatioprepared rapid acquisition  Such (i.e. false positives) to be omitted.
gradient echo (MPRAGE) sequence was used [repetition time

(Tr) = 1,950 ms; echo timeg)T= 2.98 ms; inversion time {jT=

900 ms; echo train length (EJ = 1; flip angle = 9 degrees; field

ut i

d

t



A modified version of a streamline affinity approach 3 RESULTS
originally proposed [7Tbwas Gé&Donnel I & Westin L
conjunction with a method for distance mappir{§] to obtain 3.1 Demographics and pathology findings
streamline prototypes for curves matched across time points. The average age difference between HC and mTBI volunteers
The first of these algorithms requires choosing a streamline was no't found t o beses0.78mi>f0i7H;ant (
which best represents a bund lhethean GTS8 &bré differende betweenahe TB1 and HClgfupso t h e
words, for each streamline bundle, a curve portion which is was found to be statisticahly sioc
appropriate for the calculation of alongtreamline statistics = -3455, p < 2.14 x ‘iZ)_ By designthere was nosex ratio
must be identified because of variability in streamlines lengths. difference between samples. The automated algorithm for CMB
A range of arelength coordinates common to each streamline jdentification was foundtohava sensi ti vi ty). of 94
within a bundle being analyzed is chosen along each curve No CMBs were identified in HC participants. In mTBI patients,
portion. Subsequently, ahg-streamline measures of diffusivigy CMB counts were found to range be
such as fractional anisotropy (F@)s calculated for each 2.63).
st r e aml Hemgthl soordimates along with descriptive
statistics for every point[7]. For perilesional streamlines, 3.2 DTI-derived connectivity
betweenscan differences in mean FA veeidentified. This DTI
measure was used due to the prevalence of its use in DTI studies
and because it is based on all three eigenvalues of the diffusion
tensor, thereby reportedly conveying more information about
streamlines than radial or axial diffusiy alone. Because the
number of CMBs can vary substantially across mTBI patients,
the workflow was designed to accommodate the par@itather
than sequentiaanalysis of each CMB. This computationally

efficient .feature allows more uniform dls.trlbunon ofthe reference neuroanatomical reconstruction of the corpus callosum
computational load across processors a_md IS also most u;eful reinforces the impression of its adequatecoastruction [9].
when (A) the number of subjects and imaging volumes with Although similar, the two pairs of reconstructions exhibit subtle

CMBs is large and/or (B) there is substantial variability in the differences which are emphasized by the fact that different
number of identified CMBs across subjects. These features of our colors are used to depict them

pipeline are likely to be even more useful in future studies which
focus on moderate and severe TBI, and where the number of
CMBs can be very large.

In Fig. 2, the DTderived corpora callosa of two mTBI victims
are superimposed on their rpsctive MPRAGE iFweighted
images. Each pair of differently colored streamlines depicts the
corpus callosum at one of the two time points where MRI
recordings were acquired. The reconstructions are of sufficient
quality to enable the visualization of majstreamline bundles
within the corpus callosum and to inspetite homogeneity of
their spatial overlap across time points. Comparison of Bitp

Patient 1 Patient 2
) time 1 (RGB encoding of streamline orientations) C) time 1 (RGB encoding of streamline orientations)

Sagittal coronal Sagittal coronal

Fig. 2. DTI-constrained reconstructions of the corpus callosum in two representative mTBI  patients (Patient 1: A and B;
Patient 2: C and D). Insets A and C depict RGB-encoded streamline orientations for the acute scan of each patient. Insets
(B) and (D) help to visualize differences in WM streamline locations across time points. These may be d ue to pathology -
related processes, to DWI/DTI artefacts or to other confounds.



A) Patient 1

connected cortical regions

sagittal

Fig. 3. Reconstructions of DTI streamline bundles (acute: yellow; chronic: magenta) which are adjacent to CMBs
identified in two mTBI victims (Patient 1: A and B; Patient 2: C and D). Cortical models (translucent gre  en) are
overlaid onto T1 -weighted images to assist with the visualization of CMB locations relative to brain landmarks
and to the trajectories of perilesional streamlines. Cortical regions innervated by perilesional streamline bundles

are shown as well, both in relation to the entire cortex (sagittal, axial, coronal views, left three columns) and
separately (rightmost column).



Fig. 4. Fiducial measurements of WM streamline displacements in Patients 1 (A) and 2 (B). WM bundles are displayed
for both the acute (yellow) and chronic (magenta) time points. Insets are used to show regions of interest in more detail.
Red lines are drawn between fiducial points at locations of maximal displacement. For convenience, coordinate system
axes (R = right, A = anterior, S = superior) are shown for both patients. (A) The portion of the callosal splenium
ipsilateral to the CMB is found to be 4 mm thicke r than the contralateral portion. (B) The displacement experienced by
the largest WM streamline is found to be greater than 5 mm.

These differences may be a result of network alterations due to perilesional streamlines, one can note an asymmetry in
injury, though they may be caused partially by tractography streamine trajectories with respect to the longitudinal fissure.
inaccuracies, motion and by other confounds, as discussed in Specifically, the trajectories of streamlines ipsilateral to the CMB

what follows. diverge visibly in the perilesional neighborhood; this
_ ' abnormality is observed in both acute and in chronic scans,
3.3 DTI streamline matching suggesting tat CMBs may conceivably alter WM architecture in

Fig. 3A displays the MRI scans of two mTBI victims exhibiting ~their neighborhood. Patient 2 (FigB) is a male mTBI victim
CMBs in the WM. The streamline bundles asstaiawith each (GCS = 13) with a ~3 Mh€MB. This patient made an upper

patientus corresponding CMB a @8%drecavgn,(@Og8); Hi?CME Is pegastreamting pyndie, ¢
is a male mTBI victim whose splenial callosal fibers are near a ~4 Which links the right tenporal lobe to the right parietal lobe.
mm® CMB in the lefthemisphere. Upon inspection of UPoOn comparison of acute and chronic time points, a gogtry



shift of the longest streamline bundle toward the right lateral
ventricle is apparent (Figl). These results support the possibility
that CMBs may be asciated with alterations in neural network

consistent directions of water diffusion within a region of interest.
By accounting for neural network topology and for individual
neuroanatomy, the result is more principled way of mitigating

circuitry, despite modest CMB sizes. Future research should study the effects of motion artifacts, measurement noise, and of other

these effects in larger samples.

4 DISCUSSION

Many methods for neural network analysis which have received
attention from neuroinformatician9e.g voxetbased
morphometry (VBM), tracbased spatial statistics (TBSS), and
automated longitudinal intresubject analysis  (ALISA&)
implement subject averaging to create fiber skeletons and/or
atlases for group analysis. This study proposes a patpecifc
approach which allows one to identify tract correspondences from
longitudinal scan series in the presence of CMBs. VBM uses
location-specific statistical tests of FA differences to reduce image
misalignment by projecting an approximate nonlinear regégton
onto an alignmentnvariant tract known as the FA skeleton.

confounds.

5 CONCLUSIONS

Neuroinformatics approaches to the visualization and
quantification of connectomics changes can be used to identify so
called connempathies as well as potential relationships between
neural network changes and neural/cognitive deficits on a patient
by-patient basis. The primary clinical appeal of the longitudinal
analysis method proposed in this study involves the mapping and
analyss of changes in neural networks after the onset of mTBI
related CMBs. When combined with fMRI and/or
electrophysiological measurements, approaches like ours can
provide insight into neuropathology evolution and may help to
clarify the relationship betweenchanges in neural network

Although TBSS was introduced to address some disadvantages oftopology and the associated neurocognitive deficits of brain injury
VBM [10], the method proposed here has at least one considerable patients.

advantage over TBSS in that it can be used for longitudinalaleu
network analysis at arbitrary locations in the WM, i.e. both near
and far from the traditional TBSS skeleton. Another mettbd
proposed by Yushkevich et §1.1] to address the shortcomings of
TBS®focuses on specific neural network modules of interest a
may thus be of broader application. This approach, however, does
not account for neuroanatomical changes due to
neurodegeneration or to pathological conditions, whereas our
method does. In our data analysis workflow, tractography is
performed at each mhe point within a given subject and the
resulting streamlines are matched across time points. One
alternative is to ceregister DWI volumes and only then to
perform tractography; this approach, however, results in
streamlines whose similarity is artificigd driven by the volume
co-registration process rather than by actual differences in neural
network structure. In the method proposed here, individual
structures are first generated and only then matched across time
points to ensure realistic comparisonsgtreamline trajectories.

A successful approach to curve index correspondence is the
streamline prototyping method[12 13, where a prototype
streamline is identified for an entire bundle. In our case, this
method is useful because DWI measurementpeérilesional areas
may be confounded by motion or artefact, such that relying solely
on tractography results without streamline prototyping can lead to
substantial errors. These errors can often occur because
perilesional streamlines may belong to more th@ane major
bundle and because they can have paths of varying uniformity. In
such cases, utilizing streamline prototypes along WM bundle
trajectories can help to reduce the effects of confounds such as
motion, structural changes, noise and other factorsiahhmight
impair analysis.

The OO0 B\Vestimstréammline affinity approach is suitable
for our desired application due to its stabilify]. This method
utilizes a process which is conceptually similar to the application
of a lowpass, threaimensionalspatial filter to DWI/DTI image
intensities to identify the most significant and topologically

[11]
[12]

[13]
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