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ABSTRACT 
Connectomics alterations associated with subtle forms of 
cerebrovascular neuropathologyỢsuch as cerebral microbleeds 
(CMBs)Ợcan result in substantial neurological and/or cognitive 
deficits in victims of traumatic brain injury (TBI). Quantifying 
CMB-related connectome changes in mild TBI (mTBI) patients 
requires ingenious neuroinformatics to integrate structural 
magnetic resonance imaging (sMRI) with diffusion-weighted 
imaging (DWI) for patient-tailored profiling while preserving the 
data scientistủs ability to implement population studies. Such 
solutions, however, can assist the refinement of rehabilitation 
protocols and streamline large-scale analysis while 
accommodating the heterogeneity of mTBI. This study describes 
a pipeline for the multimodal integration of sMRI/DWI/DTI to 
quantify white matter (WM) neural network circuitry alterations 
associated with mTBI-related CMBs. The approach incorporates 
WM streamline matching, topology-compliant streamline 
prototyping and along-tract analysis within a unified framework. 
When applied to the analysis of neuroimaging data acquired 
from both mTBI and healthy control volunteers, the approach 
facilitates the identification of patient-specific CMB-related 
connectomic changes while incorporating the ability to perform 
group analyses. This pipeline for the identification and profiling 
of connectopathies can assist the adaptation of clinical 
rehabilitation protocols to patientsủ individual needs. 
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1 INTRODUCTION  
The neuroinformatic analysis of structural magnetic resonance, 
diffusion-weighted and diffusion tensor imaging (sMRI, DWI and 
DTI, respectively) acquired from traumatic brain injury (TBI) 
patients can help neuroscientists to understand how brain 
network changes can lead to measurable neurological deficits 
[1]. Despite the potential of personalized neuroimaging analysis 
for neurotrauma patients, the range of algorithmic approaches 
for quantifying injury- related alterations to white matter (WM) 
networks remains limited and there are few informatics 
solutions for streamlining subject-level analyses [2]. 
Nevertheless, the ability to examine brain networks on a patient-
by-patient basis when quantifying network degradation after 
lesion onset remains desirable not only in mild TBI (mTBI) but 
also in multiple sclerosis (MS), stroke, and brain cancer. 



 
 

Fig. 1.  Flowchart of neuroimage analysis for SWI/DWI volumes (see text for details).  



 

Understanding how neural injuries can affect brain networks 
remains an important task due to the association between 
connectopathies and the degradation of neurocognitive function. 
By designing novel neuroinformatics workflows for the patient-
tailored longitudinal analysis of brain networks, the refinement 
of rehabilitation protocols for these victims of neurovascular 
pathology can be facilitated. 

This study demonstrates a novel approach to the patient-
tailored assessment of injury-related longitudinal changes in the 
macroscale connectome. Our analysis of DWI/DTI 
measurements from healthy control (HC) older adults and from 
age- and sex-matched mTBI victims with MRI-detectable 
cerebral microbleeds (CMBs) demonstrates the ability to situate 
individual patients relative to a user-defined control population. 
Importantly, the approach preserves and enhances the 
neuroinformaticianủs ability to undertake group-level studies in 
this highly heterogeneous clinical population and our pipeline 
has potential applications ranging from the quantification of 
local connectivity changes in perilesional areas to the detection 
of global reorganization of brain networks.   

2 MATERIALS AND METHODS 
A flowchart which summarizes the data processing and analysis 
steps is shown in Fig. 1.  

2.1 Participants and recruitmen t 
This study was implemented in conformity with US federal law 
(45 C.F.R. 46) and was approved by the Institutional Review 
Board (IRB) at the University of Southern California (USC). All 
materials and methods follow the relevant directives and 
guidelines enforced by the USC IRB. mTBI-related CMBs are 
often observed in older brain trauma victims [1], and all 
participants in this study were aged 65 or older at the time of 
enrollment. Exclusion criteria included (1) a history of 
neurological or psychiatric disease and (2) the presence of 
structural neuropathology (aside from CMBs) on MRI scans. Two 
groups (26 mTBI patients and 26 HC volunteers) were included, 
with a 1:1 sex ratio in each group. The Glasgow Coma Scale 
(GCS) scores of mTBI patients were available (mean µ = 13.7, 
standard deviation ς = 0.4). Welchủs t test was implemented to 
determine whether there were significant differences in age or 
GCS score between mTBI patients and HC volunteers. 

2.2 Neuroimaging  
The same MRI scanner type (Prisma MAGNETOM Trio TIM, 20-
channel head coil, 3 T magnetic field strength, Siemens Corp., 
Erlangen, Germany) was used to acquire gradient-echo (GE) 
DWI as well as anatomic MRI volumes [T1- and T2-weighted 
MRI, gradient-recalled echo (GRE)/susceptibility weighted 
imaging (SWI)]. To acquire T1-weighted MRI, a three-
dimensional (3D), magnetization-prepared rapid acquisition 
gradient echo (MPRAGE) sequence was used [repetition time 
(TR) = 1,950 ms; echo time (TE) = 2.98 ms; inversion time (TI) = 
900 ms; echo train length (ETL) = 1; flip angle = 9 degrees; field 

of view (FOV) = 256 mm × 256 mm; matrix size = 256 × 256; slice 
thickness = 1 mm]. T2-weighted volumes were acquired using a 
3D sequence (TR = 2,500 ms; TE = 360 ms; flip angle = 120 
degrees; ETL = 180; FOV = 256 mm × 256 mm; matrix size = 256 
× 256; slice thickness = 1 mm). Flow-compensated GRE/SWI 
volumes were acquired axially (TR = 30 ms; TE = 20 ms; FOV = 
256 mm × 192 mm; matrix size = 512 × 256; slice thickness = 2 
mm). DWI volumes were acquired axially in 64 gradient 
directions (TR = 8,300 ms; TE = 72 ms; flip angle = 90 degrees; 
FOV = 256 mm × 256 mm; acquisition matrix size = 128 × 128; 
slice thickness = 2 mm). Two DWI volumes with b = 0 s/mm2 
and b = 1,000 s/mm2 (where b is the diffusion-weighting constant 
of DWI) were also procured. mTBI volunteers were imaged 
acutely (~2 days after injury) and chronically (~6 months post-
injury). HC volunteers were scanned twice, within a six-month 
interval. 

2.3 DTI streamline matching  
To quantify within-subject neural network circuitry differences 
across time, an algorithm for matching DTI tractography 
streamlines across time points was integrated within the analysis 
pipeline. Based on the algorithm developed by Leemen et al, each 
streamline was modeled as a piecewise-differentiable 3D space 
curve with curvature k and torsion t, both of which are 
rotationally- and translationally-invariant topological properties 
of the curves corresponding to DTI tractography bundles [4]. By 
calculating k and t, corresponding space curves were labeled, 
local transformations of curve pairs were calculated, and a global 
transformation was computed [5]. Arc-length parametrizations, 
with point correspondences across time, were generated for each 
perilesional streamline bundle and within each subject. A curve 
index correspondence was established for every such space 
curve, across each time point and within each subject. A local 
transformation was computed to implement point-to-point co-
registration utilizing Schönemannủs solution to the orthogonal 
Procrustes problem [5]. By minimizing the global residues of 
squared inter-curve distances, a global transformation mapping 
source curves to target curves was then estimated from local 
curve transformations. 

2.4 Lesion analysis 
Lesions were identified both by a human expert with training in 
neuroradiology/neuropathology and by an automated algorithm 
which was integrated within the processing pipeline. The 
automated algorithm used a voxel classifier utilizing the 
Microbleed Anatomic Rating Scale [6] to label potential CMB 
image features. Identification was performed based on GRE/SWI 
scans, where hypointensities are indicative of CMB presence. 
Accounting for CMB shape by creating a separate pipeline 
module allowed lesions which had been erroneously identified as 
such (i.e. false positives) to be omitted. 



 

Fig. 2. DTI -constrained reconstructions of the corpus callosum in two representative mTBI  patients (Patient 1: A and B; 
Patient 2: C and D). Insets A and C depict RGB-encoded streamline orientations for the acute scan of each patient. Insets 
(B) and (D) help to visualize differences in WM streamline locations across time points. These may be d ue to pathology -
related processes, to DWI/DTI artefacts or to other confounds.  

 

A modified version of a streamline affinity approach 
originally proposed by OủDonnell & Westin [7] was used in 
conjunction with a method for distance mapping [8] to obtain 
streamline prototypes for curves matched across time points. 
The first of these algorithms requires choosing a streamline 
which best represents a bundleủs spatial trajectory. In other 
words, for each streamline bundle, a curve portion which is 
appropriate for the calculation of along-streamline statistics 
must be identified because of variability in streamlines lengths. 
A range of arc-length coordinates common to each streamline 
within a bundle being analyzed is chosen along each curve 
portion. Subsequently, along-streamline measures of diffusivityỢ
such as fractional anisotropy (FA)Ợis calculated for each 
streamlineủs arc-length coordinates along with descriptive 
statistics for every point [7]. For perilesional streamlines, 
between-scan differences in mean FA were identified. This DTI 
measure was used due to the prevalence of its use in DTI studies 
and because it is based on all three eigenvalues of the diffusion 
tensor, thereby reportedly conveying more information about 
streamlines than radial or axial diffusivity alone. Because the 
number of CMBs can vary substantially across mTBI patients, 
the workflow was designed to accommodate the parallelỢrather 
than sequentialỢanalysis of each CMB. This computationally 
efficient feature allows more uniform distribution of the 
computational load across processors and is also most useful 
when (A) the number of subjects and imaging volumes with 
CMBs is large and/or (B) there is substantial variability in the 
number of identified CMBs across subjects. These features of our 
pipeline are likely to be even more useful in future studies which 
focus on moderate and severe TBI, and where the number of 
CMBs can be very large. 

3 RESULTS 

3.1 Demographics and pathology findings  
The average age difference between HC and mTBI volunteers 
was not found to be significant (Welchủs t23.93 =-0.78, p > 0.77); 
the mean GCS score difference between the TBI and HC groups 
was found to be statistically significant, as expected (Welchủs t12 
= -34.55, p < 2.14 × 10-17). By design, there was no sex ratio 
difference between samples. The automated algorithm for CMB 
identification was found to have a sensitivity of 94.4% (ς = 4.2%). 
No CMBs were identified in HC participants. In mTBI patients, 
CMB counts were found to range between 2 and 13 (µ = 6.04, ς = 
2.63). 

3.2 DTI -derived connectivity  
In Fig. 2, the DTI-derived corpora callosa of two mTBI victims 
are superimposed on their respective MPRAGE T1-weighted 
images. Each pair of differently colored streamlines depicts the 
corpus callosum at one of the two time points where MRI 
recordings were acquired.  The reconstructions are of sufficient 
quality to enable the visualization of major streamline bundles 
within the corpus callosum and to inspect the homogeneity of 
their spatial overlap across time points. Comparison of Fig. 2 to 
reference neuroanatomical reconstruction of the corpus callosum 
reinforces the impression of its adequate reconstruction [9]. 
Although similar, the two pairs of reconstructions exhibit subtle 
differences which are emphasized by the fact that different 
colors are used to depict them.    



 

 

Fig. 3. Reconstructions of DTI streamline bundles (acute: yellow; chronic: magenta) which are adjacent to CMBs 
identified in two mTBI victims (Patient 1: A and B; Patient 2: C and D). Cortical models (translucent gre en) are 
overlaid onto T1 -weighted images to assist with the visualization of CMB locations relative to brain landmarks 
and to the trajectories of perilesional streamlines. Cortical regions innervated by perilesional streamline bundles 
are shown as well, both in relation to the entire cortex (sagittal, axial, coronal views, left three columns) and 
separately (rightmost column).  

 



 

Fig. 4. Fiducial measurements of WM streamline displacements in Patients 1 (A) and 2 (B). WM bundles are displayed 
for both the acute (yellow) and chronic (magenta) time points. Insets are used to show regions of interest in more detail. 
Red lines are drawn between fiducial points at locations of maximal displacement. For convenience, coordinate system 
axes (R = right, A = anterior, S = superior) are shown for both patients. (A) The portion of the callosal splenium 
ipsilateral to the CMB is found to be 4 mm thicke r than the contralateral portion. (B) The displacement experienced by 
the largest WM streamline is found to be greater than  5 mm. 

 These differences may be a result of network alterations due to 
injury, though they may be caused partially by tractography 
inaccuracies, motion and by other confounds, as discussed in 
what follows. 

3.3 DTI streamline matching  
Fig. 3A displays the MRI scans of two mTBI victims exhibiting 
CMBs in the WM. The streamline bundles associated with each 
patientủs corresponding CMB are shown using glyphs. Patient 1 
is a male mTBI victim whose splenial callosal fibers are near a ~4 
mm3 CMB in the left-hemisphere. Upon inspection of 

perilesional streamlines, one can note an asymmetry in 
streamline trajectories with respect to the longitudinal fissure. 
Specifically, the trajectories of streamlines ipsilateral to the CMB 
diverge visibly in the perilesional neighborhood; this 
abnormality is observed in both acute and in chronic scans, 
suggesting that CMBs may conceivably alter WM architecture in 
their neighborhood. Patient 2 (Fig. 3B) is a male mTBI victim 
(GCS = 13) with a ~3 mm3 CMB. This patient made an upper-
good recovery (GOS-E = 8); his CMB is near a streamline bundle 
which links the right temporal lobe to the right parietal lobe. 
Upon comparison of acute and chronic time points, a post-injury 



 

shift of the longest streamline bundle toward the right lateral 
ventricle is apparent (Fig. 4). These results support the possibility 
that CMBs may be associated with alterations in neural network 
circuitry, despite modest CMB sizes. Future research should study 
these effects in larger samples.  

4 DISCUSSION 
Many methods for neural network analysis which have received 
attention from neuroinformaticiansỢe.g. voxel-based 
morphometry (VBM), tract-based spatial statistics (TBSS), and 
automated longitudinal intra-subject analysis (ALISA)Ợ 
implement subject averaging to create fiber skeletons and/or 
atlases for group analysis. This study proposes a patient-specific 
approach which allows one to identify tract correspondences from 
longitudinal scan series in the presence of CMBs. VBM uses 
location-specific statistical tests of FA differences to reduce image 
misalignment by projecting an approximate nonlinear registration 
onto an alignment-invariant tract known as the FA skeleton. 
Although TBSS was introduced to address some disadvantages of 
VBM [10], the method proposed here has at least one considerable 
advantage over TBSS in that it can be used for longitudinal neural 
network analysis at arbitrary locations in the WM, i.e. both near 
and far from the traditional TBSS skeleton. Another methodỢ
proposed by Yushkevich et al. [11] to address the shortcomings of 
TBSSỢfocuses on specific neural network modules of interest and 
may thus be of broader application. This approach, however, does 
not account for neuroanatomical changes due to 
neurodegeneration or to pathological conditions, whereas our 
method does. In our data analysis workflow, tractography is 
performed at each time point within a given subject and the 
resulting streamlines are matched across time points. One 
alternative is to co-register DWI volumes and only then to 
perform tractography; this approach, however, results in 
streamlines whose similarity is artificially driven by the volume 
co-registration process rather than by actual differences in neural 
network structure. In the method proposed here, individual 
structures are first generated and only then matched across time 
points to ensure realistic comparisons of streamline trajectories. 

A successful approach to curve index correspondence is the 
streamline prototyping method [12; 13], where a prototype 
streamline is identified for an entire bundle. In our case, this 
method is useful because DWI measurements in perilesional areas 
may be confounded by motion or artefact, such that relying solely 
on tractography results without streamline prototyping can lead to 
substantial errors. These errors can often occur because 
perilesional streamlines may belong to more than one major 
bundle and because they can have paths of varying uniformity. In 
such cases, utilizing streamline prototypes along WM bundle 
trajectories can help to reduce the effects of confounds such as 
motion, structural changes, noise and other factors which might 
impair analysis. 
The OủDonnell-Westin streamline affinity approach is suitable 

for our desired application due to its stability [7]. This method 
utilizes a process which is conceptually similar to the application 
of a low-pass, three-dimensional spatial filter to DWI/DTI image 
intensities to identify the most significant and topologically-

consistent directions of water diffusion within a region of interest. 
By accounting for neural network topology and for individual 
neuroanatomy, the result is a more principled way of mitigating 
the effects of motion artifacts, measurement noise, and of other 
confounds. 

5 CONCLUSIONS 
Neuroinformatics approaches to the visualization and 
quantification of connectomics changes can be used to identify so-
called connectopathies as well as potential relationships between 
neural network changes and neural/cognitive deficits on a patient-
by-patient basis. The primary clinical appeal of the longitudinal 
analysis method proposed in this study involves the mapping and 
analysis of changes in neural networks after the onset of mTBI-
related CMBs. When combined with fMRI and/or 
electrophysiological measurements, approaches like ours can 
provide insight into neuropathology evolution and may help to 
clarify the relationship between changes in neural network 
topology and the associated neurocognitive deficits of brain injury 
patients. 
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